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1 Introduction

For our final project, we implemented a system for the rendering of the motivational image seen in
Figure 1 sourced from Quentin Kuenlin’s submission in the 2017 EPFL Rendering Competition [11].

We chose this image of two planes flying over water as it provides a slew of complex rendering
techniques for us to explore. These include (1) realistic texturing and path tracing, (2) naturalistic
lighting of the sky and the sun, (3) water simulation with bumped reflection, (4) cloud simulation and
(5) motion blur.

Each of these effects brings its own implementation challenges. For example, rendering clouds
requires modeling semi-transparent volumetric media, which can be computationally intensive with
Monte Carlo methods. Motion blur, on the other hand, typically involves temporal sampling over
moving objects or camera paths, increasing the complexity of other ray generation strategies. We
believe that by incorporating all of these techniques simultaneously, the reference provides an
appropriate range of challenging problems to attempt to solve, offering the opportunity to push the
limits of our computer graphics understanding.

Figure 1: Motivational Image

2 Methods

The primary objects used for this scene were the airplane object and texture [2], the bridge object [1],
and the sky texture map [3]. We utilised the CLAB 4 source code as an initial framework to build off,
with a few modifications made to allow for scaling and rotating objects in the scene and applying
textures using the STB Image library [4].



2.1 Path Tracing

To achieve realistic global illumination, we implemented the path tracing algorithm which esti-
mates the rendering equation using Monte Carlo integration. This algorithm encodes the following
approximation:
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Z

⌦
fr(x,!i,!o)Li(x,!i) (!i · n) d!i

⇡ Le(x,!o) +
1

N

NX

i=1

fr(x,!i,!o)Li(x,!i) (!i · n)
p(!i)

where x is a point in space and n is the surface normal. We terminate the recursion of the algorithm
with Russian Roulette termination, which unlike fixed-depth termination, does not introduce bias
[14].

To simulate light’s interaction with materials of varying properties, we tested two bidirectional
reflectance distribution functions fr (BRDFs): a modified Phong BRDF for physically based rendering
(PBR) [12] and GGX-based Cook–Torrance BRDF [17][19].

For each random Monte Carlo sample wo, instead of sampling uniformly from the hemisphere, we
use importance sampling which samples from distributions more likely to contribute to the overall
BRDF of a point [14]. This speeds up convergence by minimising the variance of the estimation.

Phong BRDF. The modified Phong BRDF takes the form of a weighted sum between a diffuse and
specular component:
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where kd, ks are the diffuse and specular coefficients satisfying kd + ks  1; ↵ is the specular
exponent; and r is the perfect specular reflective direction.

Since this BRDF combines multiple distributions, we use multiple importance sampling which, at each
ray bounce, selects one of multiple sampling distributions. For Phong, we randomly choose either
a diffuse or specular distribution with likelihood kd, ks, respectively. The probability distribution
functions for each distribution are
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We then use the inverse function method [8] to compute the sampled direction in code.

Cook-Torance BRDF. The Cook-Torance BRDF is a physically-based reflection model based on
microfacet theory. It is given by the Fresnel-weighted sum:

fr(!i,!o) = (1� F ) · fr,d + F · fr,s
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where h is the halfway vector between !i and !o; D describes the distribution of the surface normals;
F is the Fresnel term; and G is the geometric attenuation function which accounts for self-shadowing
and masking effects of microfacet surfaces.

As for the choice of D, we chose the GGX distribution (also called Trowbridge–Reitz distribution):

DGGX(h) =
↵2

⇡ [(n · h)2(↵2 � 1) + 1]2

where ↵ is surface roughness. For F , we use Schlick’s approximation [15] given by

F (!o, h) = F0 + (1� F0)(1� !o · h)5.
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Finally, for G, we use Disney’s approximation to the Smith geometry term for GGX [6] given by

G1(!) =
n · !

(n · !)(1� k) + k

G(!i,!o) = G1(!i) ·G1(!o)

where k = (↵+1)2

8 . Again, we use multiple importance sampling and inverse function method to
compute the direction. The PDF for the diffuse component remains the same as in Phong method, but
the PDF for the specular component is

ps(!i,!o) =
D(h)(n · h)
4 (!o · h)

.

2.2 Natural Light

Creating a realistic natural lighting environment required splitting the sky into two primary compo-
nents: the background texture and the sun.

Skydome. The first of these required finding a method of applying a sky texture to some arbitrary
point in the distance which we chose to accomplish through a skydome. This involved creating a
sphere with a large enough radius that the whole scene could fit inside, then applying a texture to
the inside of this sphere and choosing it to be a light emitting material. To apply a texture to the
inside of the sphere, the face normals had to be inverted so that the framework knew not to apply
them to the outside instead, leading to an additional Boolean parameter being added to the provided
Sphere.cpp code to determine this orientation.

Sun light. The process for creating the sun was more involved. We split this task into creating the
sun itself and the light bloom effect that surrounds it. Creating the physical sun was just a matter of
creating a high light emitting sphere near the bounds of the skydome. For the bloom, we utilised the
fact that the sun’s high emission value meant that most rays that ultimately hit the sun had brightness
value greater than 1 (determined by taking the dot product of the pixel’s colour and the Rec 709’s
standard for human brightness perception [18]). This enables us to isolate and process only the
brightest parts of the image. After completing the main rendering pass, we applied a post-processing
pass to simulate bloom, based on the following equation:

B(x, y) = I(x, y) + � · [K(x, y)⌦max (I(x, y)� T, 0)]

where B(x, y) is the pixel’s intensity after the bloom is added, I(x, y) is the prior colour value, � is a
scaling factor controlling the intensity of the bloom, T is the brightness threshold (set by default to
1), K(x, y) is the box filter, and ⌦ represents the convolution operator.

This bloom pass involved thresholding the frame buffer to extract the high-intensity regions, then
applying a resolution-scaled box blur to the result. This blurred light buffer was then added back to
the original image, creating the effect of light bleeding into the sky and bridge while giving a more
realistic reflection on the water.

2.3 Water Simulation

In the early stages of the project, we modeled the water as a flat, highly specular plane with a texture
map loaded onto it. This approach was provisional and ultimately insufficient for the level of realism
we wished to achieve.

To simulate a realistic water surface, we required bump mapping: a method of perturbing the surface
normals according to the derivative of a wave function. We tested two such functions: Gerstner waves
[9] and Tessendorf waves [16].

Gerstner Waves. Gerstner waves model realistic-looking ocean waves using trochoidal waveforms.
The surface height at the horizontal point x = (x, z) and time t is given by the sum of a predetermined
set of sinusoidal waves:

h(x, t) =
NX

i=1

Ai sin(ki · x� !it+ �i)

where ki = kidi is a wave vector denoting a direction and speed; !i =
p
gki is the angular frequency

from deep water dispersion relation; and �i is the phase shift.
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At render time, we take the derivative of this height function in the x and z directions using the finite
difference method to derive the bumped normal.

Tessendorf waves. Tessendorf’s method simulates realistic ocean surfaces by summing a large
number of linear sinusoidal waves in the frequency domain and transforming them into the spatial
domain using an inverse Fast Fourier Transform (IFFT). The surface height at position x = (x, z)
and time t is given by:

h(x, t) =
X

k

h̃(k, t)eik·x

where k is a wave vector and h̃(k, t) is the complex amplitude of the wave of vector k. This amplitude
is computed as

h̃(k, t) = h̃0(k)e
i!(k)t + h̃⇤

0(�k)e�i!(k)t

where w(k) =
p
gkkk and h̃0(k) is the initial random amplitude. This amplitude is sampled using a

Phillips spectrum P (k):

h̃0(k) =
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2
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p
P (k)

where ⇠r and ⇠i are Gaussian random variables. The Phillips spectrum defines the energy distribution
across wave vectors:

P (k) = A
e�1/(kkkL)2

kkk4

✓
k · ŵ
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◆2

where A is a constant controlling wave amplitude, L = V 2

g is the largest wave scale based on wind
speed V , and ŵ is the wind direction.

In our implementation, we use the Tessendorf model (leveraging the FFTW library [10]) to generate
a 256⇥ 256 tileable height map as seen in Figure 2 for the water plane, saved as an image. At render
time, we load this height map onto the water surface, and take the derivative as before to generate the
bumped normal.

Figure 2: Example Tessendorf height map

2.4 Cloud Simulation

When determining the most appropriate method for creating clouds, three approaches were tested.
The first used a OpenGL point sprites with alpha blending [5], creating small circles placed at random
positions with random alpha values. The second experimented with ray marching for volumetric
clouds, following Sebastian Lague’s tutorial [13] and Scratchapixel ’s sample code[7].

However, in the end we settled on a particle-based system based on generating a large number of small
ellipsoid objects with random sizes, opacities and locations within a set of boundaries, essentially
creating our own particle generator. To better emulate both realistic clouds and the ones seen in the
reference image, these boundaries were generated in a radial shape with an origin specified by user
input along with a direction and length. They were then placed such that half of each cloud was
below the water plane to only show the top half and better replicate the reference.
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The formula for this radial distribution is defined as follows:
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where c is the center position vector, a, b, c are the ellipsoid radii along the x, y, z axes, respectively, L
is the radiation length and the Ui are independent and identically distributed normal random variables.
Using these, ✓ = 2⇡U1, � = cos�1(2U2 � 1), opacity = L · U0.7

3 , dx is the radiation direction,
dy = 0.8U4 � 0.4 and dz = 0.8U5 � 0.4.

For each particle in the specified count, the location is determined by the a, b and c radii combined
with a randomly selected point along a standard uniform distribution. The specific location of each
along the total radiation length is chosen such that the cloud gets less dense the further away it is
from the origin, leading to the clouds becoming more transparent around the edges. The size of
each particle is then selected randomly and uniformly according to the user input minimum and
maximum size with an additional random value selected and applied to the x scale so that they are
all slightly horizontally elliptical. This combined with the layered semi-opaque objects leads to the
clouds feeling “fluffy” while still allowing some light to come through and thus improving on the
static grey clouds seen in the reference.

2.5 Motion Blur

The reference image utilises the illusion of motion blur to give the effect of the camera moving
alongside the airplanes and thus make the image feel more dynamic. Specifically, this is done through
keeping the airplanes themselves seemingly still while the water has a blur effect applied (to maintain
that the camera and airplanes are moving in sync). We realised that while it was technically possible
to physically translate both the airplane objects and the camera in the scene, averaging the pixel
values in these two states, it was far easier to instead leave everything else static and just “move” the
water.

This was accomplished through utilising a time parameter t attached to each cast ray, representing a
randomly sampled point within 1 unit of time. This number could then be multiplied with an input
representing the speed of the airplanes/camera v to create an offset of the water’s height map texture
coordinate, ' = vt. Specifically, the offset was only applied to the height of the texture coordinate as
this made the blur unidirectional on the z-axis. By taking the average of all of these marginally offset
points for each of the rays sampled for each pixel, the water developed a directional blur proportional
to the input speed, allowing the user to control the implied speed to achieve their desired output.

3 Experiments and Results

3.1 Path Tracing

As stated previously, we considered two reflectance models for our path tracing algorithm: modified
Phong BRDF and Cook-Torrance GGX BRDF. A simplified scene comparison is shown in 3.

The Cook-Torrance model significantly improves the realism of the image. In particular, the perfect
mirror reflection of the water is much better captured than under the Phong BRDF, largely due to
the inclusion of the Fresnel term which increases the reflectivity of the water at grazing angles. The
water under the Phong model, while moderately realistic, is more uniformly reflective, resembling a
metallic material more than the ocean surface. The airplane is also brighter on the Cook-Torrance
model and better captures the details of the scene in the specular reflection, although we do lose some
definition in the ridges on the wings and tail. While the Cook-Torrance model raises the complexity
and rendering time, we find this cost to be offset by the gains in realism achieved by accurately
modeling microfacet-based specular reflection, energy conservation, and Fresnel effects.
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(a) Phong BRDF (b) Cook-Torrance GGX BRDF

Figure 3: Comparison of sky texture candidates

3.2 Natural Light

When creating a realistic lighting simulation it was important to find an image that best reflected the
sky that was used in the reference. Initially we had hoped to create the orange/purple effect through
the renderer but after some experimentation, we realised it would be substantially easier without
compromising results to just choose a sky texture that already contains this.

(a) Initial sky texture attempt (b) New sky texture to better emulate reference

Figure 4: Comparison of sky texture candidates

Once we had selected an appropriate sky, we realised it was still important to have some semblance
of an accurate sun rather than relying on the texture for this as well to create a better reflection on the
water and improve the sun’s light blooming effect.

(a) Without sun (b) With sun

Figure 5: Comparison of skydome with and without an additional sphere object for the sun

There was also an attempt at using an environment map rather than the skydome and while this
returned quite similar results in terms of the quality of sky imagery, it did not allow for the atmospheric
lighting that the sphere provided. Hence, we chose to remain with the sunset texture sky and sphere
object sun combined approach.

3.3 Water Simulation

For the Gerstner method, we tested a variety of wave combinations, designing the individual parame-
ters (including amplitude, direction, phase, etc.) of each wave by hand. Figure 10 shows one such
5-wave configuration.
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For Tessendorf simulation, the appearance of the water surface is parameterized by the grid size N ,
the largest wave size L, the wind speed V , the wind direction D, and the horizontal and vertical scale
of the bump map when applied to the water surface. Figure 6 shows several configurations.

(a) With grid size of 64⇥ 64 (b) With wind speed of 10m/s (c) With diagonal wind direction

Figure 6: Comparison of generated heightmaps

We found that a grid size of 256 with a wind speed of 30m/s in the horizontal direction, and a small
vertical scale gave the optimal parameters for water conditions that were not too choppy nor too
smooth. The height map generated under this configuration was previously shown in Figure 2.

(a) With Gerstner waves (b) With Tessendorf waves

Figure 7: Comparison of water surface simulation techniques

As seen in Figure 10, the Tessendorf method presents a significant improvement in realism over
Gerstner waves. This can be largely attributed to the stochastic initialization of the wave amplitudes
and the substantial increase in the number of sinusoids considered (5 vs 2562 = 65, 536). While
the Gerstner approach requires less memory overhead (since it doesn’t have to store a height map)
and the computation of the Gerstner derivative is much faster, the use of the FFT algorithm in the
Tessendorf approach significantly attenuates the increase in total render time. In fact, we found the
height map generation to take ⇠30-40ms on average, which is quick enough to potentially facilitate
future real-time rendering projects. On these grounds, we decided that the Tessendorf simulation was
the superior approach.

3.4 Cloud Simulation

Accurately rendering clouds is challenging due to their semi-transparent structure and complex
geometry. We evaluated three methods for cloud simulation: OpenGL point sprite generator, ray
marching, and a particle system. Two approaches were ultimately not suitable for our project, while
the third was successfully integrated.

Point sprites. The first technique produced soft, dense cloud shapes in real time however, it was not
compatible with our path tracer due to the differences in rendering pipelines. Attempts to use the
particle cloud as a PNG texture also resulted in a loss of depth and realism and so this too did not
make it into the final render.

Ray marching. The ray marching approach 8 produced realistic volume effects and allowed light
to scatter within the clouds. However, while we also observed promising results for this attempt in
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a separate environment, integrating this method into our main renderer caused problems, such as
clouds obscuring key objects in the scene.

Figure 8: Ray Marching Cloud

Particle system. Our final approach distributed thousands of semi-transparent spheres in a radial
formation and thus managed to fit seamlessly into our rendering pipeline while still offering compara-
ble results to fully volumetric approaches. This created soft, transparent cloud edges 9 while still
creating a feeling of dynamic "fluffy" objects. While this method is perhaps less physically accurate,
it is more efficient and straightforward to implement and still offered results that feel arguably even
more realistic than those statically produced in the reference.

Figure 9: Cloud Effect

3.5 Motion Blur

The only parameter that has a major impact on motion blur is the flow speed which translates to the
amount of blur applied to the water. The default flow speed of 0.0008f leads an expected quality of
results however as you increase this value the impact on the blur begins to become quite abstract 10.

(a) Flowspeed of 0.001f (b) Flowspeed of 0.01f

Figure 10: Comparison of water surface simulation techniques

3.6 Overall

The final render for the project, combining all of the aforementioned techniques, was generated as
a 1024 x 512 resolution image with a sample per pixel rate of 512. Total render time was 50m 40s
using multi-threading and can be seen in Figure 11.
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Figure 11: Final scene render. 1024 x 512 resolution, 512 samples per pixel.

4 Conclusion

Through the utilisation of a combination of various computer graphics techniques such as Monte Carlo
path-tracing, Tessendorf wave simulation, natural lighting through both atmospheric and point based
lighting, particle simulation for clouds and height map offsets for motion blur, we have managed to
largely recreate the reference image and even improve on it in some areas.

However, some of the key limitations come in the reduced mirror reflectance on the airplane objects
and the predictable shape of the clouds. That is, the airplanes in the reference image manage to
combine their texture with a mirror-like surface, leading to a more notable metallic quality that feels
more realistic of modern airplanes. The reference’s clouds are also slightly more dynamic in their
shape, even if they still feel like static objects. We believe that they have imported cloud objects
rather than generating them dynamically, allowing greater flexibility in their shape at the cost of
them not looking as realistic otherwise. A possible future implementation would have the clouds be
generated not according to a radial cone formula, but rather through a preset cloud image that could
act as the distribution’s pdf.

Additionally, one of the key missing features of our output is the lack of motion blur on the airplane
propellors. While the specific airplane models that we chose hide these propellors and hence this is
not as detrimental to the final result, the ability to instead show them would lead to a feel of greater
motion in the scene and further the dynamic rendering capabilities.

Despite these limitations, we believe that our final result has managed to not only replicate the
reference but refine certain aspects further, demonstrating a shift in focus from these missed areas to
ones that still work to create a realistic, believable scene.
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